Proyecto de investigación
Non-equilibrium systems: from control to complex response (nestor)
Responsable: Antonio Prados Montaño
Tipo de Proyecto/Ayuda: PAIDI 2021: Proyectos I+D+i
Referencia: PROYEXCEL_00796
Fecha de Inicio: 02-12-2022
Fecha de Finalización: 31-12-2025
Empresa/Organismo financiador/es:
- Junta de Andalucía: Consejería de Universidad, Investigación e Innovación
Equipo:
- Equipo de Investigación:
- David Guéry-Odelin
- Bernardo Sánchez Rey
- Emmanuel Trizac
- Equipo Colaborador:
- Gregorio García Valladares
- Antonio Patrón Castro
- Carlos Alberto Plata Ramos
- Carlos Ríos Monje (alta: 24/01/2024)
- Natalia Ruiz Pino (alta: 23/03/2023)
Contratados:
- Investigadores:
- Gregorio García Valladares
Resumen del proyecto:
Our project deals with non-equilibrium systems, we are interested in dynamical responses to protocols in which physical parameters (temperature of the thermal bath, stiffness of the harmonic trap, etc.) are externally controlled. One key question is the control of the system's response, including its optimisation, to the considered protocol. This response is characterised by some physical observable (relaxation time, work, heat) that may be conveniently maximised/minimised, depending on the controller's goal. Our proposal improves our current understanding of control and complex response out of equilibrium by addressing some cutting-edge problems in different lines of research: a) control of colloidal particles, b) complex behaviour of fluids, and c) stochastic resetting.
In line a), we apply optimal controltheory to minimise the relaxation time and the work for a colloidal particle in the underdamped regime, a hot unsolved topic, including the not-yet-unveiled relations between information geometry and physical quantities. Also, we look into related optimisation problems for the Brownian gyrator, a paradigmatic system that would allow for controlling the connection of non-equilibrium steady states, a mostly unexplored field. In line b), we investigate non-equilibrium attractors for fluids with non-linear drag. Their characterisation will allow us to study the emergence of a glass transition in non-linear fluids, establishing links with granular fluids, and the optimisation of their relaxation route, establishing links with the Mpemba effect. Finally, in line c), we go beyond the current theoretical framework for stochastic resetting, using dynamical systems with discrete states and realistic resetting mechanisms. Furthermore, we will open the door to applying optimal control theory in this field, engineering optimal implementations of the resets.