Universidad de Sevilla

Vicerrectorado de Investigación

Ficha personal - Megha Bhushan


Megha Bhushan
Email: Solicitar correo
Perfil en ORCID: 0000-0003-4309-875X

Grupo de Investigación: Diverso Lab - International Computing
Departamento/Unidad: Lenguajes y Sistemas Informáticos
Situación profesional: Plan Propio-Acceso

Participa en los siguientes proyectos/ayudas en la US:

  • Proyecto de investigación:
    • AqualA - Sistema de programación de riego deficitario para cultivos Grupo Operativo (Funcionamiento) (GOPG-SE-23-0011 - Equipo Trabajo (Solicitud))

Cobertura de la base de datos de proyectos, véase aqui


Publicaciones:

Publicaciones en Revistas
Bhushan, Megha, Galindo Duarte, José Ángel, Negi, Arun, Samant, Piyush:
An ontological knowledge-based method for handling feature model defects due to dead feature. En: Engineering Applications Of Artificial Intelligence. 2024. https://doi.org/10.1016/j.engappai.2024.109000

Bhushan, Megha, Vyas, Satyam, Mall , Shrey, Negi, Arun:
A comparative study of machine learning and deep learning algorithms for predicting student¿s academic performance. 2023. Vol. 14. Pag. 2674-2683. https://doi.org/10.1007/s13198-023-02160-3

Rana, Meghavi, Bhushan, Megha:
Classifying breast cancer using transfer learning models based on histopathological images. En: Neural Computing and Applications. 2023. Vol. 35. Pag. 14243-14257. https://doi.org/10.1007/s00521-023-08484-2

Bhushan, Megha, Pandit , Akkshat, Garg , Ayush:
Machine learning and deep learning techniques for the analysis of heart disease: a systematic literature review, open challenges and future directions. En: Artificial Intelligence Review. 2023. Vol. 56. Pag. 14035-14086. https://doi.org/10.1007/s10462-023-10493-5

Rana, Meghavi, Bhushan, Megha:
Machine learning and deep learning approach for medical image analysis: diagnosis to detection. En: Multimedia Tools and Applications. 2023. Vol. 82. Pag. 26731-26769. https://doi.org/10.1007/s11042-022-14305-w

Arya, Resham, Kumar, Ashok, Bhushan, Megha:
Big Five Personality Traits Prediction Using Brain Signals. 2022. Vol. 11. Núm. 2. Pag. 1-10. https://doi.org/10.4018/IJFSA.296596

Bhushan, Megha, Galindo Duarte, José Ángel, Samant, Piyush, Kumar, Ashok, Negi, Arun:
Classifying and resolving software product line redundancies using an ontological first-order logic rule based method. En: Expert Systems With Applications. 2021. https://doi.org/10.1016/j.eswa.2020.114167

Bhushan, Megha, Negi, Arun, Samant, Piyush, Goel, Shivani, Kumar, Ajay:
A classification and systematic review of product line feature model defects. En: Software Quality Journal. 2020. Vol. 28. Pag. 1507-1550. https://doi.org/10.1007/s11219-020-09522-1

Bhushan, Megha, Goel, Shivani, Kaur, Karamjit:
Analyzing inconsistencies in software product lines using an ontological rule-based approach. En: The Journal of Systems and Software. 2018. Vol. 137. Pag. 605-617. https://doi.org/10.1016/j.jss.2017.06.002

Bhushan, Megha, Goel, Shivani, Kumar, Ajay:
Improving quality of software product line by analysing inconsistencies in feature models using an ontological rule-based approach. En: Expert Systems. 2018. Vol. 35. Núm. 3. https://doi.org/10.1111/exsy.12256

Bhushan, Megha, Goel, Shivani:
Improving software product line using an ontological approach. En: Sadhana. 2016. Vol. 41. Pag. 1381-1391. https://doi.org/10.1007/s12046-016-0571-y

Bhushan, Megha:
Machine learning and deep learning techniques for the analysis of heart disease: a systematic literature review, open challenges and future directions

Vicerrectorado de Investigación. Universidad de Sevilla. Pabellón de Brasil. Paseo de las Delicias s/n. Sevilla