Proyecto de investigación
From molecules to networks: understanding synaptic physiology and pathology of the brain through mouse models (EUSynapse)
Responsable: Guillermo Álvarez de Toledo Naranjo
Tipo de Proyecto/Ayuda: 6º Programa Marco de la U.E.
Referencia: LSHM-CT-2005-019055
Web: http://cordis.europa.eu/projects/rcn/84613_en.html
Fecha de Inicio: 01-12-2005
Fecha de Finalización: 30-11-2009
Empresa/Organismo financiador/es:
- Commission of the European Communities (Research Directorate-General)
Socios:
- The Max Planck Society for the Advancement of Science (Reinhard Jahn)
- Center for Neurogenomics and Cognitive Research (Matthijs Verhage)
- University of Heidelberg (Hannah Monyer)
- Centre National de la Recherche Scientifique (Christophe Mulle)
- Erasmus University Rotterdam (Gerard J.G.G. Borst)
- University College London (Robin R. Angus Silver)
- Ecole Polytechnique Federale de Lausanne (Henry Markram)
- Hungarian Academy of Sciences (Zoltan Nusser)
- Università degli Studi di Milano (Michela Matteoli)
- The Hebrew University of Jerusalem (Yael Stern-Back)
- Academy of Sciences of the Czech Republic (Rostilav Turecek)
- Medical Research Council (Yukiko Goda)
- Institut Pasteur (Thomas Bourgeron)
- Axaron Bioscience AG (Oliver Sorgenfrei)
- Axiope Limited (Nigel Goddard)
- Synaptic Systems GmbH (Henrik Martens)
- Faust Pharmaceuticals (Pascal Neuville)
Contratados:
- Investigadores:
- Sergio Navas Inocencio
Becarios:
- Nombramiento de Becario:
- José María Cabeza Fernández
- Juan José Casañas Díaz
- Imane Jemal
- Jaime Marcelo Maripillán Sobarzo
- María Ángeles Montes Fernández
- Francesc Xavier Muñoz Berbel
- Margarita Segovia Roldán
Resumen del proyecto:
The involvement of synapses in many neurological diseases - "synaptopathies" - is becoming increasingly apparent in recent years. Yet, despite considerable advances in our understanding of the processes of synaptic transmission and plasticity, much remains to be delineated with respect to the molecular details of the individual steps in these processes. Our aim is to further our understanding of synaptic function using a multi-systems approach, from in vitro cell free systems to in vivo models, taking full advantage of genetic mouse models, particularly those serving as models for synaptic dysfunction in neurological disease. Innovative and state of the art technologies will be applied and further developed, including biochemical, molecular, electrophysiological, and optical tools. We will derive detailed knowledge of molecular machineries that drive synaptic transmission and of mechanisms responsible for various forms of synaptic plasticity. We expect that these studies will provide invaluable insights into synaptic function and dysfunction and their contribution to complex brain functions in health and disease.